skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michaelis, Allison_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Explicit representation of finer‐scale processes can affect the sign and magnitude of the precipitation response to climate change between convection‐permitting and convection‐parameterizing models. We compare precipitation across two 15‐year epochs, a historical (HIST) and an end‐of‐21st‐century (EoC85), between a set of dynamically downscaled regional climate simulations at 3.75 km grid spacing (WRF) and bias‐corrected Community Earth System Model (CESM) output used to initialize and force the lateral boundaries of the downscaled simulations. In the historical climate, the downscaled simulations demonstrate less overall error than CESM when compared to observations for most portions of the conterminous United States. Both sets of simulations overestimate the incidence of environments with moderate to high precipitable water while CESM generally simulates rainfall that is too frequent but less intense. Within both sets of simulations, EoC85 rainfall amounts decrease in low‐moisture environments due to reduced rainfall frequency and intensity while rainfall amounts increase in high‐moisture environments as they occur more often. Overall, reductions in rainfall are stronger in WRF than in CESM, particularly during the warm season. This reduced drying in CESM is attributed to relatively higher rainfall frequency in environments with high concentrations of precipitable water and weak vertical motion. As a result, an increase in the occurrence of high moisture environments in EoC85 naturally favors more rainfall in CESM than WRF. Our results present an in‐depth examination of the characteristics of changes in overall accumulated precipitation and highlight an extra dimension of uncertainty when comparing convection‐permitting models against convection‐parameterizing models. 
    more » « less
  2. Abstract Successive atmospheric river (AR) events—known as AR families—can result in prolonged and elevated hydrological impacts relative to single ARs due to the lack of recovery time between periods of precipitation. Despite the outsized societal impacts that often stem from AR families, the large-scale environments and mechanisms associated with these compound events remain poorly understood. In this work, a new reanalysis-based 39-yr catalog of 248 AR family events affecting California between 1981 and 2019 is introduced. Nearly all (94%) of the interannual variability in AR frequency is driven by AR family versus single events. Usingk-means clustering on the 500-hPa geopotential height field, six distinct clusters of large-scale patterns associated with AR families are identified. Two clusters are of particular interest due to their strong relationship with phases of El Niño–Southern Oscillation (ENSO). One of these clusters is characterized by a strong ridge in the Bering Sea and Rossby wave propagation, most frequently occurs during La Niña and neutral ENSO years, and is associated with the highest cluster-average precipitation across California. The other cluster, characterized by a zonal elongation of lower geopotential heights across the Pacific basin and an extended North Pacific jet, most frequently occurs during El Niño years and is associated with lower cluster-average precipitation across California but with a longer duration. In contrast, single AR events do not show obvious clustering of spatial patterns. This difference suggests that the potential predictability of AR families may be enhanced relative to single AR events, especially on subseasonal to seasonal time scales. 
    more » « less